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P R O B A B I L I S T I C  M O D E L  OF A P A R T I C L E - R O U G H  W A L L  C O L L I S I O N  

I. V .  D e r e v i c h  UDC 532.529 

A statistical model of a collision of particles against a randomly rough surface is proposed. 
Closed expressions for the density functions of distribution of the coefficients of momentum 
regeneration are obtained. It is shown that, for small angles of incidence of the particles, the 
coefficient of regeneration of the normal component of the momentum on a rough surface can 
be greater than unity. 

Disperse materials in piping systems can be pneumatically conveyed by a turbulent flow in two 
fundamentally different regimes: 1) the transportation of fine particles whose dynamic relaxation time is 
of the order of the integral time scale of turbulence (the disperse impurity of these particles is involved in 
the energy-consuming fluctuations of the carrying-gas velocity; the two-phase flow of fine particles in pipes 
behaves like a homogeneous system); 2) the transportation of coarse particles whose dynamic relaxation time 
significantly exceeds the characteristic lifetime of energy-consuming turbulent vortices (the chaotic motion of 
the impurity is attributed to interparticle collisions and collisions against the channel surface). It is noteworthy 
that conveying of coarse particles can be more effective owing to less effort expended for particle grinding. 

The stable operation of pneumatic transport systems depends on the homogeneity of the concentration 
distribution of the disperse impurity in the cross section. The increase in the intensity of chaotic motion of 
the particles results in a more uniform concentration profile. For coarse particles, the velocity fluctuations 
are mainly due to their collisions against the walls. The random components of the particle velocity are 
attributed to the nonspherical shape of the particles and the roughness of the channel surface. When the 
particles interact with the wall, their rotation about the contact point is observed. The gravitational force 
and the loss of the axial velocity of the particles give rise to high-velocity slip of the phases. The differences 
in tile gas and particle velocities and their rotation result in the emergence of the Magnus force, which causes 
the intense transverse movement of the particles in the channel. To predict the motion of coarse particles in 
channels, a model of the collision between the particles and a randomly rough surface is needed. In this paper. 
the collision between spherical particles and a rough wall is studied. 

Matsumoto et al. [1, 2] modeled the rough wall by a sinusoidal surface with the use of the method 
of numerical calculation of random particle trajectories in Lagrange variables. The results of a combined 
theoretical and experimental investigation of collisions between the particles and a randomly rough surface 
were given by Sommerfeld in [3, 4]. The rough wall in [3, 4] is described by planar surfaces having random 
angles of slope relative to the channel axis. A particle-irregular surface collision was analyzed by direct 
numerical modeling of stochastic trajectories. However, in this problem the use of the method of direct 
numerical modeling, which requires considerable CPU time using supercomputers, is not justified and does 
not allow one to reveal the main parameters that control the process of collision between the particles and a 
random surface. 

In this paper, we use the theory of stochastic processes [5] to derive analytical formulas for the 
probability density of distribution of the coefficients of regeneration of the particle momentum as a function 
~f the physical properties of the particle and wall materials, the particle diameters, and the characteristic 
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dimension of the roughness. The formulas can be used to formulate the boundary conditions for the equations 
of turbulent motion of a disperse impurity with allowance for particle rotation in Euler variables [6, 7]. The 
predicted parameters of the particles reflected from a rough wall are compared with the experimental data of 
[3, 4]. 

1. Mode l  of a P a r t i c l e - R o u g h  Wall  Coll ision.  We consider a surface with random sand roughness 
characterized by the height of random mounds and the distance between the mounds. We confine our analysis 
to a surface with mounds whose characteristic height is less than the particle diameter. If the particle diameter 
is smaller than the characteristic distance between random bulges on the surface, the parameters of the 
particles reflected from the surface depend on the microstructure of the surface. The particles whose diameter 
exceeds the characteristic distance between the mounds collide against several random bulges on the surface, 
which leads to "averaging" of the random structure. Moreover, the effective height of the random roughness 
elements for these particles is smaller compared to the case of fine particles. 

The roughness element is modeled by a plane having a random angle of slope "/relative to the channel 
axis (Fig. 1). The angle of incidence a and the random angle of slope of the plane 7 are reckoned from a 
smooth surface parallel to the channel wall. The components of the linear velocity V and the angular velocity 
of the particles rotating about their axes II before collision are primed, and these parameters after collision 
are double-primed. 

The velocity components in the coordinate system (xl,y]) of the inclined plane are related to the 
velocity components in the coordinate system (x, y) attached to the channel wall by the formulas 

V~ (I,) = V~ cos 7 - V~ sin % V~ (V) = V~ cos 7 + V~ sin % ( i. 1 ) 

Here V~, V~ and V~('),), V~(7) are the components of the particle velocity before the collision in the coordinate 
systems (z, y) and (zl, yl), respectively. 

After a collision against a random surface, the components of the velocity relative to the channel wall 
are expressed via the velocity components of the particle reflected from a random inclined surface: 

V~' = V~'(~) cos'y - V~'("/) sin % V~'= V~'("/) cos ~, + V~'("/) sin % (1.2) 

Here V~', V~' and V~'(~/), V~'('),) are the components of the particle velocity relative to the channel wall and 
the random plane, respectively, after the collision. 

The particles collide only against random planes whose angle of slope satisfies the condition ")'/> - a .  
Using the assumption of the sand roughness of the channel wall, we approximate the angle of slope of random 
planes by a normal distribution with zero mean value and variance A. The probability that a particle collides 
against a random surface depends on its angle of incidence. The angle of slope of the plane relative to the 
channel wall ~/at which a collision between a particle and a random surface can occur is a random collision 
angle. Using the theory of random Brownian motion [5], we construct a function of conventional probability 
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density of distribution of the collision angle 

1 a -1 72 
P(3`, a ) =  ~ - ~  [erf (-~--~)] [ e x p ( 2 - - ~ )  - exp ( 

P(3`,a) = 0  for 3  ̀~ - a .  

(2~_ -I- .3`)2I'~I 
2A 2 ] l '  

(1.3) 

2 
/ exp (--t 2) dt is the standard probability integral. The density of the distribution function Here erf (x) = ~ o 

(1.3) satisfies the normalization condition j P(3`,a) d7 = 1. 
~ O O  

If the angles of incidence of the particles significantly exceed the variance of the random collision angle 
a >> A, the function (1.3) becomes the standard normal distribution P(3`, a) = 1 / (v /~A)exp  (-3`2/(2A2)). 

For small angles of incidence a << A, the conventional probability (1.3) corresponds to the Rayleigh 
function of probability density [5] P(3`, a) = 3`/A 2 exp (--72/(2A2)). 

The function of conventional probability (1.3) is used to determine the mean value and variance of the 
random collision angle 

1 - erf(A) a (1.4) 
(3`}=a erf(A) ' A =  v~A;  

0(3`) = ((3`2) _ (3`)2)a/2. (1.5) 

The mean value of the squared random angle 7 is 

(3 ,2) = A2[erf(A)]-l{ 1 + A exp (-A 2) -4A2[1-  erf(A)]}. (1.6) 

It follows from (1.4)-(1.6) that, for sufficiently large angles of incidence of the particles a >> A, the 
mean value of the random angle (3`) ~ 0, and its variance reaches the maximum value: D(7) = A. For small 
angles of incidence a << A, we obtain the maximum mean value of the angle and the minimum variance: 
{7) ~ V/~--/2A and D(3`) --~ A ( 2 -  7r/2) 1/2. 

It follows from (1.1)-(1.3) that to determine the relation between the velocities of the incident and 
reflected particles, a model that describes the process of their collision against a planar surface is required. 

2. M o d e l  of a Par t ic le -Surface  Collision. Effective Coefficients of M o m e n t u m  
Regenera t ion .  We consider a particle-surface collision at comparatively small velocities, which are 
characteristic of the regime of pneumatic transport of a disperse impurity (of the order of a dozen meters per 
second). In this case, the plastic deformation of the particle and channel materials can be ignored. 

The conversion of the linear and angular velocities due to collision against a plane is described within 
the framework of the model obtained from the momentum balance during collision [1, 8]. We distinguish 
between two regimes of collision: with particle slippage relative to the surface and without this slippage. The 
nonslip condition has the following form [1, 8]: 

dp a'~(7) ~< 7 v'(3`) + T .0(1 + e)lV;(3`)l. (2.1) 

Here dp is the particle diameter, #0 is the coefficient of static friction, and e is the coefficient of regeneration 
of the momentum normal component. 

After a slippage-free collision, the velocity components become 

5 1 v-(3`) 
V"(3`)= ~V~(3`)-Tdpa'z(3`), V~'(3`)=-eV~(3`), 9 t" (3` )=-2  (2.2) 

dp 

In the case where the inequality (2.1) fails, the regime with slippage occurs, and the velocity components 
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after collision take the form 
5 

V~'(7) = ~ V~(I') +/zd~O(1 + e)V~(9'), V~'(~,) = -eV~(7), 

~t"('7) = 9ffz ("/) + 5#d(1 + e)e0 V;(7) (2.3) 
dp ' 

where #d is the coefficient of dynamic friction and e0 is an index that takes on the values +1 depending on 
the direction of the particle velocity relative to the wall: 

We determine the effective coefficients of momentum regeneration and conversion of the angular velocity 
of the particles relative to the channel wall: 

, = kn = e,a 2v,. (2.5) 

Using the transformations of the velocity components (1.1) and (1.2) and the relations between the 
parameters of the particle after collision against a random surface (2.1)-(2.4), we obtain closed expressions 
for the coefficients of momentum regeneration (2.5) relative to the channel wall. 

In the absence of slippage [condition (2.1)], we have the relations 

7 
{ cos "y - z sin "7 + Aft{ ~< ~ #0(1 + e){z cos 3' + sin "),{, 

2 A k t =  [ 5 ( c o s T - z s i n T ) - ~  ~] cos T - e(z cos "7 + sin T) sin T, 

_ _  _ 2 ( 2 . 6 )  

k n = e ( c ~ 1 7 6  c~ sin T) - ~ Afll sin 3,, 

5 2 
kft = - ~  (cos7 - s i n ' ) , ) +  ff An, 

t ! where z = tan a = V~/V" is the tangent of the angle of incidence of the particle on the wall and Af~ = 
dp~'z/(2V~) is a parameter that takes into account angular rotation of the particle before collision. 

For a collision with slip, the effective coefficients of momentum regeneration have the form 

k, = [(cos 7 - z sin 7) - #a(1 + e)e0(sin 7 + z cos 7)] cos "7 - e(z cos 7 + sin 7) sin 7, 

( s in ' /  ) [ (c~ 7 ) +e)e0~,/sin + c o s T ) ]  kn = e +cos"/  c o s 7 +  sin7 --/Zd(1 z 7 sin"/, (2.7) 

5 
kf~ = Af~ - ~/Zd(1 + e)e0(sin 7 + z cos 7), e0 = sign(cos 7 -- z sin 3' + An). 

Relations (2.6) and (2.7) and the expression for the distribution density of conventional probability 
of the collision angle (1.3) allow one to determine the probability distribution of the effective coefficients of 
regeneration of the particle momentum relative to the channel wall 

o o  - - 1  

Here k = cy(7 ) and ~2'(7) are the monotonic dependence of the regeneration coefficient on the random angle 
and its derivative, respectively. The probability density (2.8) is normalized to unity. 

3. C a l c u l a t i o n  Resu l t s .  To illustrate the model, we use the experimental data obtained for glass balls 
in a horizontal plane channel with a steel surface [4]. The mean height of random bulges on the surface is 25 
/~m with standard deviation 5/ ,m.  Figure 2a and b shows the averaged coefficients of momentum regeneration 
in the longitudinal and normal directions, respectively, versus the angle of incidence of the particles. For a 
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glass-steel collision, the coefficients of static and dynamic  friction and the coefficient of regeneration of the 
normal component  of the m o m e n t u m  are as follows: #0 = #d = 0.4 and e = 0.8 [9] (triangles and squares in 
Fig. 2 refer to the experimental  data of [4]). Curves 1 and 2 correspond to the particle diameters  dp = 110 
and 460 #m, respectively. For fine and coarse particles, the variances of the angles of slope of random planes 
were taken to be A = 8 ~ and 5 ~ respectively. It is clear tha t ,  in contrast to the mean coefficient of momentum 
regeneration in the longitudinal  direction, this coefficient in the normal direction depends considerably on 
the angle of incidence. Moreover, for angles of incidence a < 15 ~ we have kn > 1. This is associated with 
the fact that  after collision against a random surface, the longitudinal velocity component  is converted to 
the normal component  of the  reflected particles. The  effect of the roughness on the regeneration coefficients 
becomes weaker as the particle sizes are increased. 

In Fig. 3, the predicted density of the probabil i ty distribution of the coefficients of momentum 
regeneration is compared with the experimental da ta  of [4] for various angles of incidence of the particles 
with dp = 110 #m. Figures 3a and b corresponds to the normal and longitudinal coefficients of momentum 
regeneration of the particles. The experimental results in the range from 0 to 15 ~ are shown by stepwise 
functions and the squares refer to calculation results. For small angles of incidence, the surface roughness 
leads to a wide spect rum of values of the normal and axial velocity components of the reflected particles. It 
should be noted that  the experimental data  of [4] on the  distribution function for other angles of incidence 
and particle diameters agree satisfactorily with the calculation results obtained by our model. 

C o n c l u s i o n s .  Our analysis has shown that ,  for small  angles of incidence of the particles, the coefficient 
of regeneration of the normal  component of the m o m e n t u m  on a rough surface can be greater than unity. 

As the angle of incidence increases, the distr ibut ion of the probability density becomes narrower and 
the mean value of the regeneration coefficient becomes smaller than unity. In the case of the longitudinal 
coefficient of m o m e n t u m  regeneration, the effect of the roughness on the parameters of the reflected particles 
shows up most noticeably for large angles of incidence of the  particles. 

This work was suppor ted  by the International  Science Foundation INTAS (Grant No. 94-4348) and 
the Russian Foundation for Fundamental  Research (Grant  No. 98-01-00353). 
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